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Spatial coherence of bending magnet radiation and application limit
of the van Cittert—Zernike theorem

Y. Takayama and S. Kamada
KEK, 1-1 Oho, Tsukuba-shi, lIbaraki 305-0801, Japan
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In this paper we discuss how the first-order spatial coherence of bending magnet radiation is determined. We
present an analytical representation of the coherence and compare it with the numerical calculations based on
the first principles. It is shown that if the electron-beam size is so large that some conditions are satisfied, the
van Cittert—Zernike theorem can be used without any modification in the vertical and horizontal directions.
The formalism presented will be useful in judging whether or not the electron-beam size in the storage ring can
be estimated directly from the van Cittert—Zernike theorem using the synchrotron radiation interferometer.
[S1063-651%99)02106-9
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I. INTRODUCTION

exdik(ri—ry)]
f dS)I(X)————

Measurement of electron-beam emittance in an electron ¥(D) = Mif2
storage ring is one of the most important themes in accelera- \/ 1(X) 1(X)
tor physics. Low emittance rings have been constructed in J dS(x)— | dS(x)—
order to obtain high brightness at light sources and high lu- s ra

minosity at colliders. Accurate measurement of emittance is ikx-D
extremely difficult in very low emittance rings, less than 1 f dS(x)I(X)exp( )
nm/rad in the horizontal direction, for instance. L
The emittance can be determined by measuring the elec- = ' )
tron beam sizer,. The beam size and the emittanceare J' dS(x)1(x)

related by the following equation,

wherek, D=Q;—Q,, andL are the wave-number vector of

light, the distance of two observation points, and the distance

between the light source and the plane where the coherence

AE, is measured, respectively. As shown in Fig. 1, we defipe

Te™ BS+( ”E_O) ' (1) =|Q,—x| andr,=|Q,—x|, which are the distances from a

point on the light source to two observation pointx) is

the distribution of light intensity on the surface of the light

source and the integration is performed on the whole surface.

whereB and » are the beta function and the dispersion funC_Eq_uat_ion (2) denotes that_the spatial co_herence at the _far
. : : . é)omt is given by the Fourier transformation of the intensity
tion at a measuring point of the electron-beam size, respec-

tively. E, and AE, are the average and the standard devia-
tion of the beam energy, respectivel§, », Ey, andAE,

can be given by calculation and/or measurement within some
accuracy.

Recently, a method using a synchrotron radiati&R)
interferometer has been under development to estimate the
electron-beam size, which measures the spatial coherence of
the bending magnet radiation in the visible light regfdnh

Light source

Observing plane

The present paper intends to give the theoretical justification /Q,
for and limitations of the method of estimating the electron- A3
beam size from the spatial coherence of the bending magnet D
radiation. /

For ordinary incoherent lights, the van Cittert—Zernike 2,

theorem can be used to calculate the spatial coherence. The
theorem represents the spatial coherence as in the following
for the far-field limit where the radiation field is regarded as  FIG. 1. The arrangement to apply the van Cittert—Zernike theo-
a spherical wav§2—4], which is rem.
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distribution of the light source. In other words, the intensity ¥ (vertical)
distribution of the light source is estimated by measuring the
spatial coherence/(D).

In the case of the synchrotron radiation, radiation is gen-
erated by a charge moving with nearly the speed of light and .
emission of light occurs along the trajectory of the moving
charge rather than at the surface of the light source. Accord-
ingly, the van Cittert—Zernike theorem must be modified to gbéérvsr
take into account this fact and the surface integration in Eq. :
(2) will be replaced by the integration over the phase space,
which represents the trajectories of moving charges of a
beam.

To answer the question of whether the van Cittert—
Zernike theorem is available for the bending magnet radia
tion, which is raised by the recent experiment involving the
SR interferometer, one needs to build an extended formula to . .
calculate the spatial coherence of the bending magnet radiéﬁ'ned almost regardiess of the light wavelength as long as
tion. Historically, calculation of the bending magnet radia- (1€ Vvertical emittance of the beam is very small. This is
tion was first performed by SchwingEs]. The coherence of becguse the radlatl_on |s.hon_10geneous in _the honzqntal .d|-
the synchrotron radiation has been discussed in several p(rjle_ctlon. For the vertical dlrectlor_1,_ the conditions are given in
pers rather qualitativel{6—8] and numerical calculations of Egs.(79), (80)’ and(81). Al condm(_)ns depend on the wave-
the spatial coherence of the undulator and bending magn%?”gth of light as well as the bending radlus_ and t_he electron-
radiation were performed by one of the authi@ Based on eam parameters. It is because the vertical divergence of

these works, we take into account the details of the bendinbad""‘t'On is a function of the Iwa\I/eI(Iength. il
magnet radiation calculating the spatial coherence. In Sec. IV some numerical calculations will be conducted

This paper consists of the following. In Sec. II, first we without any approximation in order to justify our discussions

treat the bending magnet radiation in the time domain and] Secs. Il and Ill. First we calculate the spatial coherence for
describe it in terms of the wave form of the radiation field (€ beam with finite size and without divergence. In this
and the arrival time. In the horizontal plane on which ancase, the van Cittert—Zernike theorem is well satisfied in

electron moves, the light is emitted homogeneously and tthlth thi horlzo'ntlal ak?d vertlc?l dlr:ectlons. Seﬁond, :/Ive_cal-
wave form is the same at any observer position on this plan&ulate the spatial coherence for the beam with small diver-
ence and finite size. The van Cittert—Zernike theorem is

provided the distance from the emitting point to the observef

is the same. The difference in the field between two obserySatisfied in this case, too. In these cases, the spatial coher-
ers is in the relative arrival time of the radiation. This time €NC€ is determined only by the electron-beam size at the

difference will be converted into the phase difference in theSffective emitting point. Third, we calculate the coherence
frequency domain, which plays a key roll in the spatial co-for the beam with large divergence, which violates the con-

herence. The phase difference in the fields will be deterglitions derived in Sec. lll. The van Cittert—Zernike theorem

mined by the observer position and the electron trajectory'S found not to be applicable for this case and the spatial

which is a phase space position describing the initial congi¢@herence cannot be determined only by the electron-beam

tion of the electron’s motion. The effective emitting point SiZ€ at the effective emitting point.

will be introduced to effectively measure the distance be-

tween the observer and the emitting point of radiation. It Il. APPROXIMATION OF BENDING MAGNET
depends on the observer position and the trajectory of the RADIATION

electron. By conducting the above procedures, the phase of
the radiation field will be given by Eq$28) and(29). The
phase represented by E@9) will violate the van Cittert—

Zernike theorem expressed by the form of E2). . , .
In the vertical plane, radiation is typically concentrated in?nuaegnncgtai)sp ’asassurihe%\/\;rc]) Lna\zgén?y Zgr?];fr:in?f &C: rg?gﬂgg
the emission angle of 3/ where y is the electron energy ywe x andy directions as the horizontal and vertical direc-

electron trajectory

x (horizontal)
6( S

FIG. 2. Electron motion in the bending magnet. It is supposed
that the electron’s position and the divergenc#at0 are ,y,0)
and 1A/(1+tarf x’ +tarf y’)(tanx’,tany’,1), respectively.

In this section we give the trajectory of an electron in a
bending magnet and the electric field emitted by it.
A single electron moves on an arc with an angular fre-

normalized by electron rest mass and the radiation intensity

decreases rapidly outside this angle. Therefore, we must ta ©ns, respectively. We assume that the electron passes the

in nt the wave form as well he ph in calcul osition _x(6=0)_ with veI_ocity cﬁ(_6=0)_ at timet'=0,
to account the wave form as well as the phase in calcu al herec is the light velocity andd is defined asf=w,t’.

ing spatial coherence, both of which depend on the electro " . .
trajectory and the observer position. We will approximate the.hen’,the po§|t|on and velocity of the electron at arbitrary
intensity distribution in the vertical direction with the Gauss- timet” are written as
ian form to include this effect.

In Sec. lll, the spatial coherence will be calculated using
the approximated field obtained in Sec. Il for the vertical and
horizontal directions. We will derive the conditions under y(t')=poByo+y, (4)
which the van Cittert—Zernike theorem is applicable. In the
horizontal direction, condition§7), (68), and (69) are ob- Z(t")=poB,SinO— poBy(1l—cosh) +z, (5)

X(t")=poBx Sin 0+ poB,(1—cosh) + X, ©)]
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and
By(t")= By coso+ B,sind, (6)
By(t")=By, 7
B(t") =B, cog 0) — Bysind, ®)

where we pufpy=c/w,. We use the initial conditions,

X(0)=(x,y,2), 9
B(0)=(Bx.By.B2)
L L
72
- 1+tarf x’' +tarfy’ (tanx’.tany”.1).
(10

The electron beam has divergenceandy’ in the horizontal
and vertical directions a#=0, respectively. We set the ob-
server coordinat®=(X,Y,L), wherelL is a large constant
value compared wittX, Y, x, andy. The bending radiup is
given by

p=poVBx+ B7=po, 11

where we have assumed thdty’<1.
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The solutiont’ =t; depends on the initial conditions of the
electron trajectory as well as an observer position.

The observed field should have the maximum intensity at
t=t,+R(t.)/c. Hence, we write the electric field in E(L2)
as

R(te)
E(Q,t)=g| Q,x,x",AE;t—t,— c |

(19

whereAE is the division of the electron-beam eneigjrom
the central energye,. We redefined the two-dimensional
vectors,x=(x,y) andx’=(x',y"). Equations(19) and (17)
are written as

E(Q w)=G6(Q,x,x",AE)e ®(Qxx".AE) (20)

®(Qx,x',AE)=KR(t}) + wt., (22)

G(Q,x,x',AE)= %f dtg(Q,x,x’,AE;t)e'“t, (22

wherek= w/c is the wave number. Althoug® and ® de-
pend onw, we omit it for convenience.

Here, we make an important assumption that the phase of
G does not depend on the electron trajectory, namebnd
x', for any angular frequency. Moreover, we assume that

the energy spread of the electron beam is so smallGhiat

The electric field emitted by the electron is written asindependent of the electron energy. These assumptions make

[10,11]
R e = e .
R=Q—x(t"), 13
R=IR|, (14)
"—RIR (15)
e—1-ng (16)

where e and ¢, are the electric charge and the dielectric
constant, respectively. All of the variables in the integration

(12) must be evaluated at emitter tinhe An electric field
with the angular frequency can be written as

1 .
E(Q,w)=\/T_7Tf dtE(Q,t)el!, (17)

According to Eq.(12), the main contribution to the elec-
tric field comes from the short arc, whetét’) has the mini-

mum value, for the high-energy electron beam. For exampl

if Bandn are parallel to each othet,becomes an extremely
small value,1/(2y?). The position where< has the mini-
mum value can be obtained by solving the equation,
dk(t")
dt’

=0. (18)

e

it extremely simple to calculate the spatial coherence in the
following section. The physical meaning of these assump-
tions are important. In this case, we can put

Gi(Q,x,x",AE)=G;(Q,x,x")eXi(Q, (23)
whereG; andG; are thei components of vector& and G,
respectively.G and y; are real functions. We omit the de-
pendence ofs and y; on the average electron-beam energy
Eq. We can regards and® as the wave form and phase of
the field, respectively. The phage does not affect the co-
herence, as shown in the following section. Since the phase
xi is only a function of observer poir®, we have

Gi(Qx.X',AE)  Gi(Qx,X")

G1(Q,000  Gi(Q00 29
Substituting Eq(22) into Eq. (24), we have
f dt{gi(Q,x,x',AE;t)— %gi(qo,o,o;t) et
=0. (29

Since this equation is always satisfied for any angular fre-
duencyw, we have

Gi(Q,X,X’)

gi(Q,x,x’,AE;t)zmgi(

Q.,0,0,0;t). (26

According to Eq.(26), the above assumption is equivalent to
the electric field being factored into the two functions, one of
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which depends only on the time and observer position, anthat the beam profile of the bending magnet radiation at the
the other only on the electron trajectory and the observefar point is written with the modified Bessel functigml].

position. However, this function is not convenient for the analytical
Next, we calculate the phase term in Eg1) using the treatment. To overcome this, we approximate it with the
following approximations: Gaussian form, which is
Xllel < 5L| ’
y<po , (Y—y-Ly")?
G (QXxX)=Gexp ———=——], (30
x',y' <1, 4oy
i<1, ;FZ):U,Z)—F LZU'F')Z, (31
Yo
A
A_E<1, O'pO'F’):E, (32
0
0.<1, (27)  whereoy, o, and;p are the beam size and the beam di-

_ vergence of the radiation by a single electron at the waist,
where y, and Ay are defined as,=E,/(m,c®) andAy  and the beam size at the observer position, respectively.
=AE/(mc?), respectively, wheram, is the electron rest

mass. The average electron beam energy and its spread are
defined asE, and AE, respectively. By using Eq$3)—(10)
and Eqg.(18) and the conditions in Eq27), the phase term

Ill. SPATIAL COHERENCE
OF BENDING MAGNET RADIATION

defined in Eq(21) is reduced to Since we have obtained the approximate field of the bend-
‘ ing magnet radiation, we calculate tliérst-ordey spatial
/ _ v w2 Y coherence.
QXX AE)=kL+ 2L[(X )7+ (Y=y)] The spatial coherence aQ;=(X{,Y;,L) and Q,
=(X,,Y,,L) is defined ag4
+h(QXX',AE), (29 Y2l s defined asdl
h(Q,x,x’,AE) . N I'ij(Q1,Qp;0)
7I,j(Q1!Q21w) \/F (Q Q - )\/1_, (Q Q - ):
=h(Q,x,x") iR R @)VE (2,52, @ 33
Kpg(X—x—Lx")
T [j(Q1,Q;0)=(Ef (Qu,0)Ej(Q,@)), (34
1 (X—x—Lx")%2+3(Y—y—Ly")? where(- - -) denotes the ensemble average with respect to
X ?“L 312 . (29) the electrons parametersj denote the polarization. If we
0

use the representation of the electric field in E@®) and

The first two terms on the right-hand side in Eg8) come (23, we have
from a paraxial approximation, which always appears in the

far-field calculation. If we consider only these terms and take Ti(Qr.Qz; ) =e il 7xi(Q2)]

Gto be_ constant, the van Clttert—Zerm_ke theprem in 2y. X (Gi(Q1. %X )G;(Qz, X, X')

is obtained. On the other hand, the third temns the char-

acteristic of the bending magnet radiation because this term ><efi<I>(Q1VXVX’)+iCI>(Qz,x,><’)>_ (35)

depends on the bending radius. Since this term is the third-

order, it should be much smaller than unity and can be nethe ensemble average can be replaced by integration with
glected for some conditions. This term does not confedn  the electron phase-space density, namely,
which only appears in higher than third-order terms. It is

ggge; that the third term is not symmetric with respeckto Fi’j(Ql’Qz;w):e—i[xi(Ql)—Xj(Qz)]

Next, we investigate the wave for@®; . In the the vertical , ,
direction, the polarization depends on the observer point. Xf dxdx"d(AE)lo(x,x";AE)
The beam profile for ther-polarization component has two
peaks in the vertical direction, and the coherence cannot be X Gi(Qr,X,X")Gj(Qz,%,X")

easily treated9]. In the horizontal plane, the intensity of the
mr-polarization component is much weaker than that of the
o-polarization component. For this reason we consider only '
the o-polarization component, . Since the radiation is =e'wi'i(Ql’Q2)f dxdx’1(x,x")
(not) homogeneous in thevertical) horizontal directionG,,

is the function of the vertical coordinate. It is well known X @ KD HYDYILG (Qy,x,X")

% @l [~ P(Qr . x.X") +P(Qg x,x")]
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G(Q,,x,x" )& NQuxX)Fih(Q xx) h(Qq,x,X") —h(Qy,X,X") =ho(Q1,Qz) + 6h(Q1,Q2,XL),
(36) (41
where where
D,=X;—X,, 3
oL e 37 X, =X+Lx', (42
Dy:Yl_YZ! (38)

k(Xg—Xi-ﬁ-Yg—Y%) ho(Ql,Qz)zh(Ql,0,0)_h(Qz,0,0), (43)
Wi i(Q1, Q)= 5L —xi(Q1) + xj(Qn),

(39

Ko 2 2
5h(Ql’Q2’XL):E{DXXL+ nyL+2DyXLyL
and Eq.(28) is used. Since¥;; does not depend on the

integration variablex andx’, it does not affect the coher- —[(X3+X2) D+ (y1+Y2)Dy X,
ence.ly(x,x";AE) is the five-dimensional phase-space den- Y
sity of the electron beam, and we defined —[(X1+X2)Dy+(y1+Y2)Dyly, }-
(44)
I(x,x’)=J d(AE)Io(x,x";AE). (40

It is noted thathy does not contaix andx’ and does not
To investigate the phase terms in the integration in Eqaffect the visibility. Using Eqs(30), (36), and(41), the co-
(36), it is convenient to define the phase difference as herence of ther-polarization component is reduced to

F(T,()'(Ql 1Q2 ; 0)) = |G|2ei\l,0',o'(leQ2)7ih0(Q1YQZ)f dxdx’| (X,X’)eik(XDx+yDy)/L7i6h(leQ21X+ Lx")

—v— 12 o\ — 1\2
Xexp(_(Yl y—Ly")*+(Yo—y Ly))_ s

4oy
Equation(45) is the basic equation for our formula.

A. Phase space of electron beam

The integration in Eq(45) can be performed if we suppose that the electron phase-space density is Gaussian, which is

242 "+ 12 AE)?
IO(X’X/;AE):IO(O.O;O)GX[( _ Y ayyy' +Byy (AE) )

2¢y © 2(AEg)?
AE 2+2 AEV( , AE}, . AE\?
. Yo X~ Fod X [\ X T g Box| X g, .6
exp 5o : (46)
|
wherea,q, By, Yxo» @aNdeg, are the Twiss parameters and 1 AEg)\2
the emittance in the horizontal direction, respectively, and Qox— 8—7771’ =
ay, By, vy, ande, are those of the vertical directi¢t2]. 7 ay= Ox 0 (48)
and ' are the horizontal dispersion and its derivative, re- V1+ 6,
spectively, and the vertical dispersion is assumed to be zero.
After the integration in Eq(40), we have Bt 1 AE0)2
oxT |\ M
2 ’ 12 €0x EO
N Y X+ 2a, XX+ ByX By= , (49)
I(X,X )—I(0,0)ex;{— . 1+,
_nYit2ayyy + By’ A 1 AE\?
2¢ : (47 Yoxt ——|\ 7~
y €0x 0
(50)

y = )
where g V1+ 6,
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(51) B. Horizontal direction

We calculate the first-order coherence at two poiis

) =(D/2,0L) andQ,=(—D/2,0L). The coherence is defined

o

The beam size and divergence are given by

AEO)

Eo €ox

AEy\?

Oy=\Bxex= Box€oxt 77E_0 )
) AEg)\*
Oy = VNYxEx= \/70x80x+( WIE_O) )

in the horizontal direction, respectively, and

oy=\PByey,
Ty =Yy,

in the vertical direction, respectively.

52 in Eq. (33), which is
1_‘(J' (r(QliQZ;w)
7,0(Q1, Qo 0) = ' ,
Yo T Q1 Qe @) VT Q2. Q23 0)
(53 (57)
whereI’, , can be calculated with Eq$45) and (47). sh
(54 terms defined in Eq44), which is used to calculate E(5),
are written as
k
(55) Q1. Qe )= 5 (DX +DYY), (59)
(56)
oh(Qq,Qq,% ) =h(Q,,Q;,x.)=0. (59

The following equations define the individual conditions
for each of the horizontal and vertical directions under whichAfter performing this integration and using the definition of

the van Cittert—Zernike theorem is valid.

the coherence in Eq57), we have

|70’,U(Q11Q2;w)|: 4
[1+

xXex

where

ﬂx:ﬁx_ZLax"_Lz')’Xa

By=B,—2Lay+L%y,.

By and B, can be obtained by transformirgy, and 3, in the

free space with distande respectively.

If the van Cittert—Zernike theorem is available, the coher-

k’D2%0?2
212 )’

which is obtained by putting,— 0 in Eq.(60). By compar-

ing Egs.(60) and (63), the van Cittert—Zernike theorem is

ence should be

|’YU,J(Q1!Q2;w)|:eX[< —

2
eyPy
(1+ i )
9p
—\ 2 —\ 2 —\ 2
prDSXBX) 14 eyBy kPODSyBy
L3 7’ L3
— 2
1+& kpoe,D
@zo?| T T o
212 (kPOSXEXD ’
1+ ———
3
[
kpoDe E
%<1, (64)
(61)
(62 KeoDeylly _, , evBy 65
= % (65
By[ kpoe,D
\/;;( P °|_82X )<1 (66)
X

As a result, the following three conditions are derived to
make the van Cittert—Zernike theorem valid:

(63

PoBxEx
O-X> 2 y

(67)

available if the following are satisfied f@=L/koy: L
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= —
o> —pOBVEy , 69) - Siljy
2 yEy o
Lo 1+ 2 ) |70’,U(Q11Q2;w)|: — -
Op 8yBy poD ——
1+ &yByB
72 3 x€yPxPy
p
and
k’D?g2
= y
Bx poex Xexp — 2
 \JEo 5
O-X Bx L (69)
Consequently, the van Cittert—Zernike theorem is available syﬁy;z
in the horizontal direction if the three conditions in E¢S7), X — g
(68), and(69) are satisfied. eyPBy poD ——
. o _ 1+ =+ 3 exeyPxBy
If L is very large, we can pys,=L?y,,8y,=L?y,. Then oy L
Egs.(67), (68), and(69) are written as
N2
_ A0 (75)
0x> POy, (70) Ipl9p eyBy
If three conditions,
12
y _
0> por—T 2T (71) kpoD
Po —— eyB
1+ ﬂ) —| exeyBuBy<1+ 52, (76)
o', L g
p P
2.2
L ey
<1, (77)
Ve eyByoy
o> B—posx, (72 —
435(312#83//83/) ,

respectively. In general, these conditions are well satisfiedre satisfied forD=L/(ko,), we can judge that the van

for the present electron storage rings.
simply written as

C. Vertical direction

Cittert—Zernike theorem is available. These conditions are

Po SXSyEXEy 79
Next we investigate the coherence in the vertical direc- Ty> F e E ’ (79
tion. We calculate the first-order coherence at two points 1+ Lzy)
Q:=(0,b/2L) andQ,=(0,—D/2,L). The coherence is de- Oy
fined in Eq(34). sh terms are written as
Ley
o> = (80
pr O'p
5h(Q1:Q21XL):FDXLyLv (73 _
L e
o> —\/= B y_ (81)
2kay, V opteyfy
h(Qq,Q;,x)=6n(Q,,Q,,x.)=0. (74  As aresult, the van Cittert—Zernike theorem is available in

the vertical direction if condition79), (80), and (81) are
satisfied. It is noted that these conditions depend on the
wavelength of the light, since the beam profile depends on

After performing the integration and using the definition of the wavelength.

the coherence in Eq57), we have

For very largel, these conditions are reduced to
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0')'(0')', Xy
o> py—F—, (82 opm s
o ;, 2 —.-—>x’y electron trajectory
1+ —
9p
ﬂ X y,
o> —7, (83 ’
Op 100 m <oommooemoosee- .
O'p Xy
O (84)
Tp 2
1+ —
O'y xy’yy L
. . . 200 m
In this section we calculated the spatial coherence of the R / z
bending magnet radiation and derived some conditions under X,y ’
which the van Cittert—Zernike theorem can be used. . . o-
The conditions are given individually for each of the hori- a 0 0
zontal and vertical directions. It is important that in the hori- ! b 2
opserver

zontal direction, Egs(67) and (69) do not depend on the

wavelength of light. If;f,>sﬂy, which is easily satisfied for FIG. 3. Arrangement used to calculate spatial coherence for a
visible light, is satisfied, E(68) also does not depend on the finite beam size with no divergence.
wavelength. This means that conditions are determined al-
most entirely with the electron-beam parameters and bendingost completely calculated using E(0) or (75) if the
radius; the wave form of light has little effect on the coher-Vvertical divergence of the electron beam is very small. If the
ence. In the vertical direction, the wave form may affect thevertical divergence is very large, the coherence can be ap-
coherence because all conditigi7®), (80), and(81) depend proximately calculated because the Gaussian approximation
on the wavelength. Since the Gaussian approximation is ndgé not a complete one.
satisfactory for the bending magnet radiation, these condi-
tions, which are based on the Gaussian approximation, are A. Finite beam size and no beam divergence
not complete. Taking into account these circumstances, it is
more reliable to use the van Cittert—Zernike theorem in thei1
horizontal direction t_han in the vertical direction to estimate We consider the arrangement as shown in Fig. 3. Two
the electron-beam size. L
. o ; L . vectors,n and B, become parallel at the origin when the

The discussion in this section is based on the approximas O coordinate), is at the center of two point€; and

tions in Eqs.(23), (28), (29), (30), and(45). To confirm that ¢ 1

these approximations are reasonable, we calculate the spat] ?é gg;;::'()gu&‘iw;?ncﬁ]'guéﬁtl(i)r:lsa rllrt]y th|tshzebc(ta|rourj1i,nw$ ;drzﬁgse
coherence from the first principle and compare it with the g c 9

i N thi i po, the wavelength of the lighk, and the electron-beam
results derived in this section. energy to be 10 m, 8.66 m, 500 nm and 2.5 GeV, respec-
tively. We use three electron beam sizes: 50, 100, and
200 um. The electron densiti(x,x’) is chosen to be

In this section we calculate the spatial coherence, , 5
. i X
|70‘,()'(Q11Q21w)|! using Eqs(lz), (17)1 (33)1 and (34) I(X,X’)=I(0,0)ex;{ _ _ y )5()(/) (85)

Here, we calculate the coherence when the electron beam
as some size and no divergence.

IV. NUMERICAL CALCULATIONS

Since we consider only the-polarization component, suf- 205 203

fixes for the polarization are not explicitly written in this

section. This can be obtained by taking the following limit in Eg.
First we calculate the coherence when the electron bear7):

has some size and no divergence in the vertical and horizon-

tal directions. The coherence can be calculated by the van V By yEXy— Oxy s
Cittert—Zernike theorem in this case.
Next, we calculate the coherence when the electron beam [ yExy—0,

has both small size and divergence. We show that the van
Cittert—Zernike theorem is also applicable in the horizontal
and vertical directions.

Last, we calculate the coherence when the electron beamthe van Cittert—Zernike theorem can be applied, the spatial
has a large divergence and no size. If the van Cittert—Zernikeoherence should be given by
theorem were applied, the coherence would be unity for any
divergence of the electron beam. However, since the condi- 2 2
tions derived in the last section are not satisfied, the coher- | Ye.6(Q1,Q2; @) =exp( - ); - —é) (86)
ence must decrease. We show that the coherence can be al- 8oy 8<Tcy

exy—0.
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TABLE I. Comparison of the coherent size for a finite electron-
beam size. The coherent size calculated by the van Cittert—Zernike

ot theorem and numerical calculation in the horizontal and vertical
§ directions are compared.
Q
=
8 Electron-beam size van Cittert—Zernike Numerical calculation
= o. . )
- Theorem Horizontal Vertical
& (pm) (mm) (mm) (mm)
50 7.958 7.958 7.958
100 3.979 3.979 3.979
Separation (mm) 200 1.989 1.989 1.989

FIG. 4. Spatial coherence in the horizontal direction with a hori-

zontal beam size. L . . . .
for D/2>L(rp in the vertical direction, Wherdwp is the

where the coherent Siz@cx and O'cy in the horizontal and beam size of the I|ght at the observer pOint, the ||ght itself is

vertical directions are defined as too weak to be measured accurately. Therefore, in order to
obtain enough light intensity, the coherent sizg, must be
LA 87) smaller tharLal’D. Using Eqs(87) and(32), we have another
P ) "
> Aoy, condition,
L (88) (89)
o= , oy>0y.
Y 4Ama, yooe
respectively. For consideration of the horizontal direction, _ _
we putQ,=(D/2,0L), Q,=(—D/2,0L), and ¢,=0, and B. Small beam size and beam divergence
for the vertical direction we puQ;=(0,D/2L), Q,=(0, Next, we consider an electron beam with finite size and
—-D/2L), andoy,=0. divergence. We consider the arrangement as shown in Fig. 6.

The results of numerical calculations are shown in Figs. 4 For a simplicity, the electron densityx,x’) is chosen to
and 5 and Table I. In Fig. 4 and Fig. 5, the absolute values ofe
the spatial coherence are plotted as a function of the separa-
tion of two observer point® in the horizontal and vertical y
directions, respectively. The curves of the spatial coherence I(x,x’)=|(0,0)exp( et F) o(x"—sx), (90)
are almost the same in both directions. By fitting these x Ty
curves with the Gaussian shape defined in B6), we ob-
tain the coherent size numerically and compare this with the . . .
coherent size given by the van Cittert—Zernike theorem inwheres IS & constant af?d we take it to be(ﬂ/rn)_ here. Th'S
Egs. (87) and (88). The van Cittert—Zernike theorem gives can be obtained by taking the following limit in EG7):

the same results as the numerical calculations, so that this

X2 2

theorem is available in the vertical and horizontal directions. 0.05mrad 1% Y
Theoretically, the van Cittert—Zernike theorem can be ap- 50pm e
plied for any beam size. However, it is quite difficult to —F y electron (rajectory
measure a very small size in the vertical direction. If the ) ‘
vertical sizeo is very small, the separatidd, which must
be larger than the coherent size g defined in Eq(88), can
be very large. Since the intensity of light decreases rapidly otmarad xy
100 m womsmmneeeenoe ;
1
s, .
X,y

o 0.8

3]

8

=

% 0.6 o l

° 02mrad 4§ X .Y S

:?'3 - 2001 m 3

‘é { [P, z

o2 ; X,y

. __., ______ _:L ________ ‘,_
. 2, Q. Q;
Separation (mm) observer

FIG. 5. Spatial coherence in the vertical direction with a vertical FIG. 6. Arrangement used to calculate the spatial coherence for
beam size. a small beam divergence and small beam size.
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TABLE II. Comparison of the coherent size for a small
electron-beam size and divergence. The coherent size calculated by
the van Cittert—Zernike theorem and numerical calculation in the
horizontal and vertical directions are compared.

Electron-beam size van Cittert—Zernike Numerical calculation

Theorem Horizontal  Vertical
(um) (mm) (mm) (mm)
50 7.958 7.958 7.961
100 3.979 3.979 3.982
Separation (mm) 200 1.989 1.989 1.991

FIG. 7. Spatial coherence in the horizontal direction with a hori-

zontal beam size and divergence. . . . . . .
g Zernike theorem is a good approximation with which to cal-

culate the coherent size, as long as the conditions are satis-

\/ﬁx,yex,y_> Ox,y» fied.
As in the previous case, there is a condition at divergence
/—),X Jexy— Ty =8|oyy of the light beam under which the light beam reaches the
s , X,y A

observer points with sufficient intensity. In this case, the size
of the light beam at the observer pointlis/oy®+ oy in the
vertical direction. Therefore, the minimum size of the elec-
tron beam to be measured in the vertical direction is given by
In this case, the coherent size expected by the van Cittertthe inequality

Zernike theorem is also given in Eq&87) and (88). We

choose three parameters far,,, which are 50um,

£yy—0.

100 wm, and 200 um. For these parameters, the electron- op

beam divergencezs;yy are set to be 0.05 mrad, 0.1 mrad, and ‘Ty>—,2’ (91)
0.2 mrad, respectively, and all conditions derived in the last 1+(2)

section are well satisfied. In the same way as the previous o

case, for consideration of the horizontal direction, we set
Q,=(D/2,0L), Q,=(—D/2,0L), and 5y=0, 0y=0, and
for the vertical direction we se@Q,=(0D/2L), Q,=(0, where Eq.(32) is used. It is noted this condition is different
—-D/2L), ando,=0, o,=0. from Eq. (84).

The results of numerical calculations are shown in Figs. 7
and 8 and Table Il. In Fig. 7 and Fig. 8 the spatial coherence o

) . . x5y

is plotted as a function of the separation of two observer .

pointsD in the horizontal and the vertical directions, respec- ' ¢ eeemmnnn,
tively. The van Cittert—Zernike theorem and the numerical Xy \

calculation agree for the coherent size. Very little discrep-
ancy in the vertical direction is due to the fact that the radia-

tion is not homogeneous in this direction. In any case, the electron trajectory

X,y
spatial coherence is almost entirely determined by the — 1lmrad
electron-beam size and does not depend on the electron- 4.—}’); ------------
beam divergence. Therefore, even if the electron beam has AN
both beam size and beam divergence, the van Cittert—
Xy
2mrad X
© Xy ;
Q .
S J
1=
%) ) 4
Q X :y !
3 . Smrad ;L
7] Xy “TTTTTTYTY :
______ e @
: 0, 2. 0,
Separation (mm) observer

FIG. 8. Spatial coherence in the vertical direction with a vertical FIG. 9. Arrangement used to calculate the spatial coherence for
beam size and divergence. a finite large divergence with no beam size at the origin.
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TABLE Ill. Comparison of the coherent size for a large
electron-beam divergence in the vertical direction. The coherent
8 size expected by Eq95) and the numerical calculation are com-
5 pared.
£
S Electron-beam
g divergence Analytical calculation  Numerical calculation
& (mrad (mm) (mm)
: : : : 0.5 66.6 31.2
% » w0 w© w0 100 1 36.7 23.0
Separation (mm) 2 24.0 18.1
19.8 15.2

FIG. 10. Spatial coherence in the horizontal direction with hori-
zontal divergence.

_ although the divergence distribution of the electron beam is
C. Large beam divergence Gaussian. This comes from the third-order contribution of
Finally, we calculate the coherence when the electrorihe phase. Actually, these curves are fitted exactly with the
beam has a large divergence and no beam size at the origieurves expected analytically in EG0), which is
The arrangement is shown in Fig. 9.
We calculate four cases. For each case we use four

electron-beam divergences: 0.5, 1, 2, and 5 mrad. The distri- |75.0(Q1. Q2 @)= P KpoDenBy |2 (93
bution of electron beam is put as 1 %)
L
Xr2 y72 .
I(x,x")=1(0,0)exp — 2072 2977 a(X). (920 wheree,B,=L20,2 in this case.
x y
. . . . Lo 2. Vertical divergence— vertical coherence

This can be obtained by taking the following limit in Eq.
(47): We use the parameters

/ D D

Bx,yexy—0, Ql=(0,§,L>, Q2=(0,—§,L , 0')’(:0,0')',?&0.

VYxyExy 0'>,<,y'

The results of numerical calculations are shown in Fig. 11.
The coherence decreases more rapidly than that of the first
case(horizontal divergence~ horizontal coherengeMore-

It is noted that if the van Cittert—Zernike theorem is avail- over, the curves are similar to the Gaussian shape.

eyy—0.

able, the coherence must be unity for any case. According to Eq.(75), the coherent size is given by
1. Horizontal divergence— horizontal coherence syﬁyD2
h 176,0(Qu. Qs 0)|[=exp — =" —=—
We use the parameters, 8ap(opteyBy)
D D , ) D2
Q.= E’O’L , Qo= — E’O'L ,  0x#0,0,=0. =exp — g , (94)
Cc

The coherence curves calculated numerically are show{jhere
in Fig. 10. We see that the curves are not Gaussian in shape,

1 ;;2)(;% + 8yEy)
: : I 0 5mraél Te” B. . (95)
; : : ) : 8yﬁy

: : 4 2mrad In this case, we can put,3,=L%¢,* ando,=1.79 mrad.
"""""""" NN A pormad As shown in Table Ill, we compare this with the coherent

: : ‘ : size calculated numerically, which is obtained by fitting the
curves in Fig. 11 by Eq94). A large discrepancy is found,
especially for the large coherent size, which comes from the
: ; ‘ - fact that the bending magnet radiation is not exactly the
. é é é : Gaussian beam. Therefore, the Gaussian approximation is
not perfect for calculating coherence and in order to confirm
precisely whether the van Cittert—Zernike theorem can be

FIG. 11. Spatial coherence in the vertical direction with vertical used in the vertical direction, numerical calculation for each

divergence. specific case is necessary.

Spatial coherence

° ° o

= 1= 0

T T
rEd

; ;

et
w0

Separation (mm)
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PRTYY S 5mrad..... 2earad. ... lmrad. ... 0.5miad......... _
3 : ; ; : 0 08| i i
5 : ' : ' 2
8 .
D 06 |rerrmrere e S SN 4 [5)
s : B op [Tl b T e
5] : .-g
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2 ; § 04 : ; * b Smrad(oum) |
2 02 : s :
: o : : : :
: mo.z_.............i .............. ; .............. E...............E ............. -
0 1 i 1 i . . . .
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0 20 40 60 80 100
FIG. 12. Spatial coherence in the vertical direction with hori- Separation (mm)

zontal divergence. . . . N .
FIG. 13. Spatial coherence in the horizontal direction with ver-

tical divergence. “num” and “ana” represent the numerical calcu-
lation and the analytical calculation, respectively.

3. Horizontal divergence— vertical coherence
We use the parameters

We showed that the van Cittert—Zernike theorem can be
applied in the horizontal and vertical directions if the
electron-beam size is much larger than a certain vajuso
) ) . _. that the electron-beam size can be estimated by measuring

The results of numerical calculations are shown in Fig.,e spatial coherence. On the other hand, if the electron-
12. The coherence is always. unity in this case, as eXpectafyam size is much smaller than, the electron-beam diver-
from Eq.(79), because there is no phase difference betweeaence can be estimated by measuring the spatial coherence.

two observer points at all. Moreover, the Intensities at FWOThe conditions under which the van Cittert—Zernike theorem
points are always the same. Therefore, the horizontal diver-

gence of the electron beam does not affect the vertical ca® valid are vyntten In Eqs(67), (68), and(69) for the hori-
herence at all. zontal direction and in Eq$79), (80), and(81) for the ver-
tical direction. If the vertical divergence of the electron beam
4. Vertical divergence— horizontal coherence is small,o in the horizontal direction is fully determined by
the bending radius and the electron-beam parameters. For the
vertical direction,os, depends heavily on the wavelength of

light as well as on the bending radius and the electron-beam

D D , ,
Q=(0z.L|, Q=[0-5.L| o#0sy=0.

We use the parameters

D D , , parameters. It is complicated to justify the applicability of
Ql:(?o"—)' QZ:( - E’O'L>' 0x=00y70. the van Cittert—Zernike theorem in the vertical direction. In
that sense, an estimation of the vertical size is more difficult
According to Eq.(60), the expected curve is than that of the horizontal size. However, we can easily
eliminate this difficulty by introducing a vertical bending
=1 magnet and exchanging the characteristics of measurement
( 1+ 8y_fé’y) in the horizontal direction and the vertical direction. A series
. of numerical calculations based on the first principles were
|V6,6(Q1,Qz; @)= - ° —3, carried out for some specific cases to make the argument
4 ( 8yﬁy) kpoDs,B, clear.
1+ +
;,23 L3 We emphasize some advantages of the SR interferometer

(96) in measuring the emittance compared to other optical meth-
ods, such as via the x-ray pinhole camgtd—15. We can

wheresyﬁy=L2¢r§2 in this case. The results of numerical measure the electron-beam size by the degree to which the

calculations and the analytically expected curves in@y. SR interferometer is affected by the field depth and the dif-
are shown in Fig. 13. We can see that Eg6) is not a  fraction. These effects are already included in the principle
complete approximation to describe the coherence. Thi§f the measurement as explained in this paper. Also, we can

shows that the Gaussian approximation is a poor approxima&hoose any wavelength for the measurement, especially in
tion with which to calculate the coherence again. the horizontal direction, so long as the interference pattern

can be measured, although the visible light has some techni-
cal advantages in treating the optical system and detector
easily. The accuracy of the measurement of emittance is lim-

We calculated the spatial coherence of the bending magted only by the errors of the optical system, such as the
net radiation while assuming that the radiation is representedeformation and blot of the mirror, and the resolution of the
with the phased and the wave formG. The result was charge-coupled device camera to measure the interference
compared with a numerical calculation. pattern.

V. SUMMARY
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