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Spatial coherence of bending magnet radiation and application limit
of the van Cittert –Zernike theorem

Y. Takayama and S. Kamada
KEK, 1-1 Oho, Tsukuba-shi, Ibaraki 305-0801, Japan

~Received 24 July 1998!

In this paper we discuss how the first-order spatial coherence of bending magnet radiation is determined. We
present an analytical representation of the coherence and compare it with the numerical calculations based on
the first principles. It is shown that if the electron-beam size is so large that some conditions are satisfied, the
van Cittert–Zernike theorem can be used without any modification in the vertical and horizontal directions.
The formalism presented will be useful in judging whether or not the electron-beam size in the storage ring can
be estimated directly from the van Cittert–Zernike theorem using the synchrotron radiation interferometer.
@S1063-651X~99!02106-6#

PACS number~s!: 29.27.Fh, 41.60.Ap
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I. INTRODUCTION

Measurement of electron-beam emittance in an elec
storage ring is one of the most important themes in accel
tor physics. Low emittance rings have been constructed
order to obtain high brightness at light sources and high
minosity at colliders. Accurate measurement of emittanc
extremely difficult in very low emittance rings, less than
nm/rad in the horizontal direction, for instance.

The emittance can be determined by measuring the e
tron beam sizese . The beam size and the emittance« are
related by the following equation,

se5Ab«1S h
DE0

E0
D 2

, ~1!

whereb andh are the beta function and the dispersion fun
tion at a measuring point of the electron-beam size, resp
tively. E0 andDE0 are the average and the standard dev
tion of the beam energy, respectively.b, h, E0, and DE0

can be given by calculation and/or measurement within so
accuracy.

Recently, a method using a synchrotron radiation~SR!
interferometer has been under development to estimate
electron-beam size, which measures the spatial coheren
the bending magnet radiation in the visible light region@1#.
The present paper intends to give the theoretical justifica
for and limitations of the method of estimating the electro
beam size from the spatial coherence of the bending ma
radiation.

For ordinary incoherent lights, the van Cittert–Zerni
theorem can be used to calculate the spatial coherence.
theorem represents the spatial coherence as in the follow
for the far-field limit where the radiation field is regarded
a spherical wave@2–4#, which is
PRE 591063-651X/99/59~6!/7128~13!/$15.00
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E dS~x!I ~x!
exp@ ik~r 12r 2!#

r 1r 2

AE dS~x!
I ~x!

r 1
E dS~x!

I ~x!

r 2

.

E dS~x!I ~x!expS ikx•D

L
D

E dS~x!I ~x!

, ~2!

wherek, D5Q12Q2, andL are the wave-number vector o
light, the distance of two observation points, and the dista
between the light source and the plane where the coher
is measured, respectively. As shown in Fig. 1, we definer 1
5uQ12xu and r 25uQ22xu, which are the distances from
point on the light source to two observation points.I (x) is
the distribution of light intensity on the surface of the lig
source and the integration is performed on the whole surfa
Equation ~2! denotes that the spatial coherence at the
point is given by the Fourier transformation of the intens

FIG. 1. The arrangement to apply the van Cittert–Zernike th
rem.
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PRE 59 7129SPATIAL COHERENCE OF BENDING MAGNET . . .
distribution of the light source. In other words, the intens
distribution of the light source is estimated by measuring
spatial coherenceg(D).

In the case of the synchrotron radiation, radiation is g
erated by a charge moving with nearly the speed of light
emission of light occurs along the trajectory of the movi
charge rather than at the surface of the light source. Acc
ingly, the van Cittert–Zernike theorem must be modified
take into account this fact and the surface integration in
~2! will be replaced by the integration over the phase spa
which represents the trajectories of moving charges o
beam.

To answer the question of whether the van Citte
Zernike theorem is available for the bending magnet rad
tion, which is raised by the recent experiment involving t
SR interferometer, one needs to build an extended formu
calculate the spatial coherence of the bending magnet ra
tion. Historically, calculation of the bending magnet rad
tion was first performed by Schwinger@5#. The coherence o
the synchrotron radiation has been discussed in severa
pers rather qualitatively@6–8# and numerical calculations o
the spatial coherence of the undulator and bending ma
radiation were performed by one of the authors@9#. Based on
these works, we take into account the details of the bend
magnet radiation calculating the spatial coherence.

This paper consists of the following. In Sec. II, first w
treat the bending magnet radiation in the time domain
describe it in terms of the wave form of the radiation fie
and the arrival time. In the horizontal plane on which
electron moves, the light is emitted homogeneously and
wave form is the same at any observer position on this pla
provided the distance from the emitting point to the obser
is the same. The difference in the field between two obse
ers is in the relative arrival time of the radiation. This tim
difference will be converted into the phase difference in
frequency domain, which plays a key roll in the spatial c
herence. The phase difference in the fields will be de
mined by the observer position and the electron trajecto
which is a phase space position describing the initial con
tion of the electron’s motion. The effective emitting poi
will be introduced to effectively measure the distance
tween the observer and the emitting point of radiation
depends on the observer position and the trajectory of
electron. By conducting the above procedures, the phas
the radiation field will be given by Eqs.~28! and ~29!. The
phase represented by Eq.~29! will violate the van Cittert–
Zernike theorem expressed by the form of Eq.~2!.

In the vertical plane, radiation is typically concentrated
the emission angle of 1/g, whereg is the electron energy
normalized by electron rest mass and the radiation inten
decreases rapidly outside this angle. Therefore, we must
into account the wave form as well as the phase in calcu
ing spatial coherence, both of which depend on the elec
trajectory and the observer position. We will approximate
intensity distribution in the vertical direction with the Gaus
ian form to include this effect.

In Sec. III, the spatial coherence will be calculated us
the approximated field obtained in Sec. II for the vertical a
horizontal directions. We will derive the conditions und
which the van Cittert–Zernike theorem is applicable. In t
horizontal direction, conditions~67!, ~68!, and ~69! are ob-
e
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tained almost regardless of the light wavelength as long
the vertical emittance of the beam is very small. This
because the radiation is homogeneous in the horizonta
rection. For the vertical direction, the conditions are given
Eqs.~79!, ~80!, and~81!. All conditions depend on the wave
length of light as well as the bending radius and the electr
beam parameters. It is because the vertical divergenc
radiation is a function of the wavelength.

In Sec. IV some numerical calculations will be conduct
without any approximation in order to justify our discussio
in Secs. II and III. First we calculate the spatial coherence
the beam with finite size and without divergence. In th
case, the van Cittert–Zernike theorem is well satisfied
both the horizontal and vertical directions. Second, we c
culate the spatial coherence for the beam with small div
gence and finite size. The van Cittert–Zernike theorem
satisfied in this case, too. In these cases, the spatial co
ence is determined only by the electron-beam size at
effective emitting point. Third, we calculate the coheren
for the beam with large divergence, which violates the co
ditions derived in Sec. III. The van Cittert–Zernike theore
is found not to be applicable for this case and the spa
coherence cannot be determined only by the electron-b
size at the effective emitting point.

II. APPROXIMATION OF BENDING MAGNET
RADIATION

In this section we give the trajectory of an electron in
bending magnet and the electric field emitted by it.

A single electron moves on an arc with an angular f
quencyvr , as shown in Fig. 2. The field of the bendin
magnet is assumed to have only ay component. We refer to
the x and y directions as the horizontal and vertical dire
tions, respectively. We assume that the electron passes
position x(u50) with velocity cb(u50) at time t850,
where c is the light velocity andu is defined asu5vrt8.
Then, the position and velocity of the electron at arbitra
time t8 are written as

x~ t8!5r0bx sinu1r0bz~12cosu!1x, ~3!

y~ t8!5r0byu1y, ~4!

z~ t8!5r0bz sinu2r0bx~12cosu!1z, ~5!

FIG. 2. Electron motion in the bending magnet. It is suppos
that the electron’s position and the divergence atu50 are (x,y,0)
and 1/A(11tan2 x81tan2 y8)(tanx8,tany8,1), respectively.
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7130 PRE 59Y. TAKAYAMA AND S. KAMADA
and

bx~ t8!5bx cosu1bz sinu, ~6!

by~ t8!5by , ~7!

bz~ t8!5bz cos~u!2bx sinu, ~8!

where we putr05c/vr . We use the initial conditions,

x~0!5~x,y,z!, ~9!

b~0!5~bx ,by ,bz!

5
A 12

1

g2

11tan2 x81tan2 y8
~ tanx8,tany8,1!.

~10!

The electron beam has divergencex8 andy8 in the horizontal
and vertical directions atu50, respectively. We set the ob
server coordinateQ5(X,Y,L), whereL is a large constan
value compared withX, Y, x, andy. The bending radiusr is
given by

r5r0Abx
21bz

2.r0 , ~11!

where we have assumed thatx8,y8!1.
The electric field emitted by the electron is written

@10,11#

E~Q,t !5
e

4p«0
F 1

k

n

R2
1

1

ck

d

dt8
S n2b

kR D G
t5t81R(t8)/c

,

~12!

R5Q2x~ t8!, ~13!

R5uRu, ~14!

n5R/R, ~15!

k512n•b, ~16!

where e and «0 are the electric charge and the dielect
constant, respectively. All of the variables in the integrat
~12! must be evaluated at emitter timet8. An electric field
with the angular frequencyv can be written as

E~Q,v!5
1

A2p
E dtE~Q,t !eivt. ~17!

According to Eq.~12!, the main contribution to the elec
tric field comes from the short arc, wherek(t8) has the mini-
mum value, for the high-energy electron beam. For exam
if b andn are parallel to each other,k becomes an extremel
small value,1/(2g2). The position wherek has the mini-
mum value can be obtained by solving the equation,

dk~ t8!

dt8
50. ~18!
e,

The solutiont85te8 depends on the initial conditions of th
electron trajectory as well as an observer position.

The observed field should have the maximum intensity
t5te81R(te8)/c. Hence, we write the electric field in Eq.~12!
as

E~Q,t !5gS Q,x,x8,DE;t2te82
R~ te8!

c D , ~19!

whereDE is the division of the electron-beam energyE from
the central energyE0. We redefined the two-dimensiona
vectors,x5(x,y) andx85(x8,y8). Equations~19! and ~17!
are written as

E~Q,v!5Ĝ~Q,x,x8,DE!eiF(Q,x,x8,DE), ~20!

F~Q,x,x8,DE!5kR~ te8!1vte8 , ~21!

Ĝ~Q,x,x8,DE!5
1

A2p
E dtg~Q,x,x8,DE;t !eivt, ~22!

wherek5v/c is the wave number. AlthoughĜ and F de-
pend onv, we omit it for convenience.

Here, we make an important assumption that the phas
Ĝ does not depend on the electron trajectory, namely,x and
x8, for any angular frequencyv. Moreover, we assume tha
the energy spread of the electron beam is so small thatĜ is
independent of the electron energy. These assumptions m
it extremely simple to calculate the spatial coherence in
following section. The physical meaning of these assum
tions are important. In this case, we can put

Ĝi~Q,x,x8,DE![Gi~Q,x,x8!eix i (Q), ~23!

whereĜi andGi are thei components of vectorsĜ andG,
respectively.G and x i are real functions. We omit the de
pendence ofG andx i on the average electron-beam ener
E0. We can regardG andF as the wave form and phase o
the field, respectively. The phasex i does not affect the co
herence, as shown in the following section. Since the ph
x i is only a function of observer pointQ, we have

Ĝi~Q,x,x8,DE!

Ĝi~Q,0,0,0!
5

Gi~Q,x,x8!

Gi~Q,0,0!
. ~24!

Substituting Eq.~22! into Eq. ~24!, we have

E dtH gi~Q,x,x8,DE;t !2
Gi~Q,x,x8!

Gi~Q,0,0!
gi~Q,0,0,0;t !J eivt

50. ~25!

Since this equation is always satisfied for any angular
quencyv, we have

gi~Q,x,x8,DE;t !5
Gi~Q,x,x8!

Gi~Q,0,0!
gi~Q,0,0,0;t !. ~26!

According to Eq.~26!, the above assumption is equivalent
the electric field being factored into the two functions, one
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PRE 59 7131SPATIAL COHERENCE OF BENDING MAGNET . . .
which depends only on the time and observer position,
the other only on the electron trajectory and the obser
position.

Next, we calculate the phase term in Eq.~21! using the
following approximations:

X,Y,x,y!r0 ,L,

x8,y8!1,

1

g0
!1,

DE

E0
!1,

ue!1, ~27!

where g0 and Dg are defined asg05E0 /(mec
2) and Dg

5DE/(mec
2), respectively, whereme is the electron res

mass. The average electron beam energy and its sprea
defined asE0 andDE, respectively. By using Eqs.~3!–~10!
and Eq.~18! and the conditions in Eq.~27!, the phase term
defined in Eq.~21! is reduced to

F~Q,x,x8,DE!5kL1
k

2L
@~X2x!21~Y2y!2#

1h~Q,x,x8,DE!, ~28!

h~Q,x,x8,DE!

5h~Q,x,x8!

5
kr0~X2x2Lx8!

2L

3S 1

g0
2

1
~X2x2Lx8!213~Y2y2Ly8!2

3L2 D . ~29!

The first two terms on the right-hand side in Eq.~28! come
from a paraxial approximation, which always appears in
far-field calculation. If we consider only these terms and ta
G to be constant, the van Cittert–Zernike theorem in Eq.~2!
is obtained. On the other hand, the third termh is the char-
acteristic of the bending magnet radiation because this t
depends on the bending radius. Since this term is the th
order, it should be much smaller than unity and can be
glected for some conditions. This term does not containDg,
which only appears in higher than third-order terms. It
noted that the third term is not symmetric with respect tox
andy.

Next, we investigate the wave formGi . In the the vertical
direction, the polarization depends on the observer po
The beam profile for thep-polarization component has tw
peaks in the vertical direction, and the coherence canno
easily treated@9#. In the horizontal plane, the intensity of th
p-polarization component is much weaker than that of
s-polarization component. For this reason we consider o
the s-polarization component,Gs . Since the radiation is
~not! homogeneous in the~vertical! horizontal direction,Gs

is the function of the vertical coordinate. It is well know
d
r

are

e
e

m
d-
e-

t.

be

e
ly

that the beam profile of the bending magnet radiation at
far point is written with the modified Bessel function@11#.
However, this function is not convenient for the analytic
treatment. To overcome this, we approximate it with t
Gaussian form, which is

Gs~Q,x,x8!5G expS 2
~Y2y2Ly8!2

4s̄p
2 D , ~30!

s̄p
25sp

21L2sp8
2, ~31!

spsp85
l

4p
, ~32!

wheresp , sp8 , and s̄p are the beam size and the beam
vergence of the radiation by a single electron at the wa
and the beam size at the observer position, respectively.

III. SPATIAL COHERENCE
OF BENDING MAGNET RADIATION

Since we have obtained the approximate field of the be
ing magnet radiation, we calculate the~first-order! spatial
coherence.

The spatial coherence atQ15(X1 ,Y1 ,L) and Q2
5(X2 ,Y2 ,L) is defined as@4#

g i , j~Q1 ,Q2 ;v!5
G i , j~Q1 ,Q2 ;v!

AG i ,i~Q1 ,Q1 ;v!AG j , j~Q2 ,Q2 ;v!
,

~33!

G i , j~Q1 ,Q2 ;v!5^Ei* ~Q1 ,v!Ej~Q2 ,v!&, ~34!

where ^•••& denotes the ensemble average with respec
the electrons parameters;i , j denote the polarization. If we
use the representation of the electric field in Eqs.~20! and
~23!, we have

G i , j~Q1 ,Q2 ;v!5e2 i [x i (Q1)2x j (Q2)]

3^Gi~Q1 ,x,x8!Gj~Q2 ,x,x8!

3e2 iF(Q1 ,x,x8)1 iF(Q2 ,x,x8)&. ~35!

The ensemble average can be replaced by integration
the electron phase-space density, namely,

G i , j~Q1 ,Q2 ;v!5e2 i [x i (Q1)2x j (Q2)]

3E dxdx8d~DE!I 0~x,x8;DE!

3Gi~Q1 ,x,x8!Gj~Q2 ,x,x8!

3ei [ 2F(Q1 ,x,x8)1F(Q2 ,x,x8)]

5eiC i , j (Q1 ,Q2)E dxdx8I ~x,x8!

3eik(xDx1yDy)/LGi~Q1 ,x,x8!
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Gj~Q2 ,x,x8!e2 ih(Q1 ,x,x8)1 ih(Q2 ,x,x8),

~36!

where

Dx5X12X2 , ~37!

Dy5Y12Y2 , ~38!

C i , j~Q1 ,Q2!5
k~X2

22X1
21Y2

22Y1
2!

2L
2x i~Q1!1x j~Q2!,

~39!

and Eq. ~28! is used. SinceC i , j does not depend on th
integration variablesx and x8, it does not affect the coher
ence.I 0(x,x8;DE) is the five-dimensional phase-space de
sity of the electron beam, and we defined

I ~x,x8!5E d~DE!I 0~x,x8;DE!. ~40!

To investigate the phase terms in the integration in
~36!, it is convenient to define the phase difference as
d
n

re
e

-

.

h~Q1 ,x,x8!2h~Q2 ,x,x8!5h0~Q1 ,Q2!1dh~Q1 ,Q2 ,xL!,
~41!

where

xL[x1Lx8, ~42!

h0~Q1 ,Q2!5h~Q1 ,0,0!2h~Q2 ,0,0!, ~43!

dh~Q1 ,Q2 ,xL!5
kr0

2L3
$DxxL

21DxyL
212DyxLyL

2@~x11x2!Dx1~y11y2!Dy#xL

2@~x11x2!Dy1~y11y2!Dx#yL%.

~44!

It is noted thath0 does not containx and x8 and does not
affect the visibility. Using Eqs.~30!, ~36!, and~41!, the co-
herence of thes-polarization component is reduced to
ich is
Gs,s~Q1 ,Q2 ;v!5uGu2eiCs,s(Q1 ,Q2)2 ih0(Q1 ,Q2)E dxdx8I ~x,x8!eik(xDx1yDy)/L2 idh(Q1 ,Q2 ,x1Lx8)

3expS 2
~Y12y2Ly8!21~Y22y2Ly8!2

4s̄p
2 D . ~45!

Equation~45! is the basic equation for our formula.

A. Phase space of electron beam

The integration in Eq.~45! can be performed if we suppose that the electron phase-space density is Gaussian, wh

I 0~x,x8;DE!5I 0~0,0;0!expS 2
gyy

212ayyy81byy82

2«y
2

~DE!2

2~DE0!2D
3expS 2

g0xS x2h
DE

E0
D 2

12a0xS x2h
DE

E0
D S x82h8

DE

E0
D1b0xS x82h8

DE

E0
D 2

2«0x

D , ~46!
whereax0 , bx0 , gx0, and«0x are the Twiss parameters an
the emittance in the horizontal direction, respectively, a
ay , by , gy , and«y are those of the vertical direction@12#. h
and h8 are the horizontal dispersion and its derivative,
spectively, and the vertical dispersion is assumed to be z
After the integration in Eq.~40!, we have

I ~x,x8!5I ~0,0!expS 2
gxx

212axxx81bxx82

2«x

2
gyy

212ayyy81byy82

2«y
D , ~47!

where
d

-
ro.

ax5

a0x2
1

«0x
hh8S DE0

E0
D 2

A11dx

, ~48!

bx5

b0x1
1

«0x
S h

DE0

E0
D 2

A11dx

, ~49!

gx5

g0x1
1

«0x
S h8

DE0

E0
D 2

A11dx

, ~50!
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«x5«0xA11dx, ~51!

dx5S DE0

E0
D 2~g0xh

212a0xhh81b0xh82!

«0x
. ~52!

The beam size and divergence are given by

sx5Abx«x5Ab0x«0x1S h
DE0

E0
D 2

, ~53!

sx85Agx«x5Ag0x«0x1S h8
DE0

E0
D 2

, ~54!

in the horizontal direction, respectively, and

sy5Aby«y, ~55!

sy85Agy«y, ~56!

in the vertical direction, respectively.
The following equations define the individual conditio

for each of the horizontal and vertical directions under wh
the van Cittert–Zernike theorem is valid.
er

s

h

B. Horizontal direction

We calculate the first-order coherence at two pointsQ1
5(D/2,0,L) andQ25(2D/2,0,L). The coherence is define
in Eq. ~33!, which is

gs,s~Q1 ,Q2 ;v!5
Gs,s~Q1 ,Q2 ;v!

AGs,s~Q1 ,Q1 ;v!AGs,s~Q2 ,Q2 ;v!
,

~57!

whereGs,s can be calculated with Eqs.~45! and ~47!. dh
terms defined in Eq.~44!, which is used to calculate Eq.~45!,
are written as

dh~Q1 ,Q2 ,xL!5
kr0

2L3
~DxL

21DyL
2!, ~58!

dh~Q1 ,Q1 ,xL!5dh~Q2 ,Q2 ,xL!50. ~59!

After performing this integration and using the definition
the coherence in Eq.~57!, we have
ugs,s~Q1 ,Q2 ;v!u5!4

S 11
«yb̄y

s̄p
2 D 2

H 11S kr0D«xb̄x

L3 D 2J H S 11
«yb̄y

s̄p
2 D 2

1S kr0D«yb̄y

L3 D 2J
3expF 2

k2D2sx
2

2L2 S 11
b̄x

bx
S kr0«xD

L2 D 2

11S kr0«xb̄xD

L3 D 2 D G , ~60!
to
where

b̄x5bx22Lax1L2gx , ~61!

b̄y5by22Lay1L2gy . ~62!

b̄x andb̄y can be obtained by transformingbx andby in the
free space with distanceL, respectively.

If the van Cittert–Zernike theorem is available, the coh
ence should be

ugs,s~Q1 ,Q2 ;v!u5expS 2
k2D2sx

2

2L2 D , ~63!

which is obtained by puttingr0→0 in Eq. ~60!. By compar-
ing Eqs.~60! and ~63!, the van Cittert–Zernike theorem i
available if the following are satisfied forD5L/ksx :
-

kr0D«xb̄x

L3
!1, ~64!

kr0D«yb̄y

L3
!11

«yb̄y

s̄p
2

, ~65!

Ab̄x

bx
S kr0«xD

L2 D !1. ~66!

As a result, the following three conditions are derived
make the van Cittert–Zernike theorem valid:

sx@
r0b̄x«x

L2
, ~67!
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sx@
r0b̄y«y

L2S 11
b̄y«y

s̄p
2 D , ~68!

and

sx@Ab̄x

bx

r0«x

L
. ~69!

Consequently, the van Cittert–Zernike theorem is availa
in the horizontal direction if the three conditions in Eqs.~67!,
~68!, and~69! are satisfied.

If L is very large, we can putb̄x.L2gx ,b̄y.L2gy . Then
Eqs.~67!, ~68!, and~69! are written as

sx@r0sx8
2, ~70!

sx@r0

sy8
2

F11S sy8

sp8
D 2G , ~71!

sx@Agx

bx
r0«x , ~72!

respectively. In general, these conditions are well satis
for the present electron storage rings.

C. Vertical direction

Next we investigate the coherence in the vertical dir
tion. We calculate the first-order coherence at two poi
Q15(0,D/2,L) and Q25(0,2D/2,L). The coherence is de
fined in Eq.~34!. dh terms are written as

dh~Q1 ,Q2 ,xL!5
kr0

L3
DxLyL , ~73!

dh~Q1 ,Q1 ,xL!5dh~Q2 ,Q2 ,xL!50. ~74!

After performing the integration and using the definition
the coherence in Eq.~57!, we have
le

d

-
s

ugs,s~Q1 ,Q2 ;v!u5! 11
«yb̄y

s̄p
2

11
«yb̄y

s̄p
2

1S kr0D

L3 D 2

«x«yb̄xb̄y

3expF 2
k2D2sy

2

2L2

3S 11
L2«y

2

«ybys̄p
2

11
«yb̄y

s̄p
2

1S kr0D

L3 D 2

«x«yb̄xb̄y
D

2
«yb̄yD

2

8s̄p
2~ s̄p

21«yb̄y!G . ~75!

If three conditions,

S kr0D

L3 D 2

«x«yb̄xb̄y!11
«yb̄y

s̄p
2

, ~76!

L2«y
2

«ybys̄p
2

!1, ~77!

«yb̄yD
2

4s̄p
2~ s̄p

21«yb̄y!
!1, ~78!

are satisfied forD5L/(ksy), we can judge that the van
Cittert–Zernike theorem is available. These conditions
simply written as

sy@
r0

L2A «x«yb̄xb̄y

S 11
«yb̄y

s̄p
2 D , ~79!

sy@
L«y

s̄p

~80!

sy@
L

2ks̄p

A «yb̄y

s̄p
21«yb̄y

. ~81!

As a result, the van Cittert–Zernike theorem is available
the vertical direction if conditions~79!, ~80!, and ~81! are
satisfied. It is noted that these conditions depend on
wavelength of the light, since the beam profile depends
the wavelength.

For very largeL, these conditions are reduced to
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sy@r0

sx8sy8

A11S sy8

sp8
D 2

, ~82!

sy@
«y

sp8
, ~83!

sy@
sp

A11S sp8

sy8
D 2

. ~84!

In this section we calculated the spatial coherence of
bending magnet radiation and derived some conditions un
which the van Cittert–Zernike theorem can be used.

The conditions are given individually for each of the ho
zontal and vertical directions. It is important that in the ho
zontal direction, Eqs.~67! and ~69! do not depend on the
wavelength of light. Ifs̄p

2@«b̄y , which is easily satisfied for
visible light, is satisfied, Eq.~68! also does not depend on th
wavelength. This means that conditions are determined
most entirely with the electron-beam parameters and ben
radius; the wave form of light has little effect on the cohe
ence. In the vertical direction, the wave form may affect
coherence because all conditions~79!, ~80!, and~81! depend
on the wavelength. Since the Gaussian approximation is
satisfactory for the bending magnet radiation, these co
tions, which are based on the Gaussian approximation,
not complete. Taking into account these circumstances,
more reliable to use the van Cittert–Zernike theorem in
horizontal direction than in the vertical direction to estima
the electron-beam size.

The discussion in this section is based on the approxi
tions in Eqs.~23!, ~28!, ~29!, ~30!, and~45!. To confirm that
these approximations are reasonable, we calculate the sp
coherence from the first principle and compare it with t
results derived in this section.

IV. NUMERICAL CALCULATIONS

In this section we calculate the spatial coheren
ugs,s(Q1 ,Q2 ;v)u, using Eqs.~12!, ~17!, ~33!, and ~34!.
Since we consider only thes-polarization component, suf
fixes for the polarization are not explicitly written in th
section.

First we calculate the coherence when the electron b
has some size and no divergence in the vertical and hori
tal directions. The coherence can be calculated by the
Cittert–Zernike theorem in this case.

Next, we calculate the coherence when the electron b
has both small size and divergence. We show that the
Cittert–Zernike theorem is also applicable in the horizon
and vertical directions.

Last, we calculate the coherence when the electron b
has a large divergence and no size. If the van Cittert–Zern
theorem were applied, the coherence would be unity for
divergence of the electron beam. However, since the co
tions derived in the last section are not satisfied, the co
ence must decrease. We show that the coherence can b
e
er
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most completely calculated using Eq.~60! or ~75! if the
vertical divergence of the electron beam is very small. If t
vertical divergence is very large, the coherence can be
proximately calculated because the Gaussian approxima
is not a complete one.

A. Finite beam size and no beam divergence

Here, we calculate the coherence when the electron b
has some size and no divergence.

We consider the arrangement as shown in Fig. 3. T
vectors,n and b, become parallel at the origin when th
observer coordinateQc is at the center of two points,Q1 and
Q2. For all numerical calculations in this section, we choo
the distanceL between the origin andQc , the bending radius
r0, the wavelength of the lightl, and the electron-beam
energy to be 10 m, 8.66 m, 500 nm and 2.5 GeV, resp
tively. We use three electron beam sizes: 50, 100,
200 mm. The electron densityI (x,x8) is chosen to be

I ~x,x8!5I ~0,0!expS 2
x2

2sx
2

2
y2

2sy
2D d~x8!. ~85!

This can be obtained by taking the following limit in Eq
~47!:

Abx,y«x,y→sx,y ,

Agx,y«x,y→0,

«x,y→0.

If the van Cittert–Zernike theorem can be applied, the spa
coherence should be given by

ugs,s~Q1 ,Q2 ;v!u5expS 2
Dx

2

8scx
2

2
Dy

2

8scy
2 D , ~86!

FIG. 3. Arrangement used to calculate spatial coherence f
finite beam size with no divergence.
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where the coherent sizescx and scy in the horizontal and
vertical directions are defined as

scx5
Ll

4psx
, ~87!

scy5
Ll

4psy
, ~88!

respectively. For consideration of the horizontal directio
we put Q15(D/2,0,L), Q25(2D/2,0,L), and sy50, and
for the vertical direction we putQ15(0,D/2,L), Q25(0,
2D/2,L), andsx50.

The results of numerical calculations are shown in Figs
and 5 and Table I. In Fig. 4 and Fig. 5, the absolute value
the spatial coherence are plotted as a function of the sep
tion of two observer pointsD in the horizontal and vertica
directions, respectively. The curves of the spatial cohere
are almost the same in both directions. By fitting the
curves with the Gaussian shape defined in Eq.~86!, we ob-
tain the coherent size numerically and compare this with
coherent size given by the van Cittert–Zernike theorem
Eqs. ~87! and ~88!. The van Cittert–Zernike theorem give
the same results as the numerical calculations, so that
theorem is available in the vertical and horizontal directio

Theoretically, the van Cittert–Zernike theorem can be
plied for any beam size. However, it is quite difficult
measure a very small size in the vertical direction. If t
vertical sizesy is very small, the separationD, which must
be larger than the coherent size 2scy defined in Eq.~88!, can
be very large. Since the intensity of light decreases rap

FIG. 4. Spatial coherence in the horizontal direction with a ho
zontal beam size.

FIG. 5. Spatial coherence in the vertical direction with a verti
beam size.
,
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for D/2.Lsp8 in the vertical direction, whereLsp8 is the
beam size of the light at the observer point, the light itsel
too weak to be measured accurately. Therefore, in orde
obtain enough light intensity, the coherent sizescy must be
smaller thanLsp8 . Using Eqs.~87! and~32!, we have another
condition,

sy.sp . ~89!

B. Small beam size and beam divergence

Next, we consider an electron beam with finite size a
divergence. We consider the arrangement as shown in Fi

For a simplicity, the electron densityI (x,x8) is chosen to
be

I ~x,x8!5I ~0,0!expS 2
x2

2sx
2

2
y2

2sy
2D d~x82sx!, ~90!

wheres is a constant and we take it to be 1~1/m! here. This
can be obtained by taking the following limit in Eq.~47!:

-

l FIG. 6. Arrangement used to calculate the spatial coherence
a small beam divergence and small beam size.

TABLE I. Comparison of the coherent size for a finite electro
beam size. The coherent size calculated by the van Cittert–Zer
theorem and numerical calculation in the horizontal and vert
directions are compared.

Electron-beam size van Cittert–Zernike Numerical calculatio
Theorem Horizontal Vertical

(mm) ~mm! ~mm! ~mm!

50 7.958 7.958 7.958
100 3.979 3.979 3.979
200 1.989 1.989 1.989
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Abx,y«x,y→sx,y ,

Agx,y«x,y→sx,y8 5ususx,y ,

«x,y→0.

In this case, the coherent size expected by the van Citt
Zernike theorem is also given in Eqs.~87! and ~88!. We
choose three parameters forsx,y , which are 50mm,
100 mm, and 200mm. For these parameters, the electro
beam divergencessx,y8 are set to be 0.05 mrad, 0.1 mrad, a
0.2 mrad, respectively, and all conditions derived in the l
section are well satisfied. In the same way as the prev
case, for consideration of the horizontal direction, we
Q15(D/2,0,L), Q25(2D/2,0,L), and sy50, sy850, and
for the vertical direction we setQ15(0,D/2,L), Q25(0,
2D/2,L), andsx50, sx850.

The results of numerical calculations are shown in Figs
and 8 and Table II. In Fig. 7 and Fig. 8 the spatial cohere
is plotted as a function of the separation of two obser
pointsD in the horizontal and the vertical directions, respe
tively. The van Cittert–Zernike theorem and the numeri
calculation agree for the coherent size. Very little discre
ancy in the vertical direction is due to the fact that the rad
tion is not homogeneous in this direction. In any case,
spatial coherence is almost entirely determined by
electron-beam size and does not depend on the elec
beam divergence. Therefore, even if the electron beam
both beam size and beam divergence, the van Citte

FIG. 7. Spatial coherence in the horizontal direction with a ho
zontal beam size and divergence.

FIG. 8. Spatial coherence in the vertical direction with a verti
beam size and divergence.
t–
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Zernike theorem is a good approximation with which to c
culate the coherent size, as long as the conditions are s
fied.

As in the previous case, there is a condition at diverge
of the light beam under which the light beam reaches
observer points with sufficient intensity. In this case, the s
of the light beam at the observer point isLAsp8

21sy8
2 in the

vertical direction. Therefore, the minimum size of the ele
tron beam to be measured in the vertical direction is given
the inequality

sy.
sp

A11S sy8

sp8
D 2

, ~91!

where Eq.~32! is used. It is noted this condition is differen
from Eq. ~84!.

-

l FIG. 9. Arrangement used to calculate the spatial coherence
a finite large divergence with no beam size at the origin.

TABLE II. Comparison of the coherent size for a sma
electron-beam size and divergence. The coherent size calculate
the van Cittert–Zernike theorem and numerical calculation in
horizontal and vertical directions are compared.

Electron-beam size van Cittert–Zernike Numerical calculatio
Theorem Horizontal Vertical

(mm) ~mm! ~mm! ~mm!

50 7.958 7.958 7.961
100 3.979 3.979 3.982
200 1.989 1.989 1.991
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C. Large beam divergence

Finally, we calculate the coherence when the elect
beam has a large divergence and no beam size at the o
The arrangement is shown in Fig. 9.

We calculate four cases. For each case we use
electron-beam divergences: 0.5, 1, 2, and 5 mrad. The di
bution of electron beam is put as

I ~x,x8!5I ~0,0!expS 2
x82

2sx8
2

2
y82

2sy8
2D d~x!. ~92!

This can be obtained by taking the following limit in Eq
~47!:

Abx,y«x,y→0,

Agx,y«x,y→sx,y8 ,

«x,y→0.

It is noted that if the van Cittert–Zernike theorem is ava
able, the coherence must be unity for any case.

1. Horizontal divergencẽ horizontal coherence

We use the parameters,

Q15S D

2
,0,L D , Q25S 2

D

2
,0,L D , sx8Þ0,sy850.

The coherence curves calculated numerically are sh
in Fig. 10. We see that the curves are not Gaussian in sh

FIG. 10. Spatial coherence in the horizontal direction with ho
zontal divergence.

FIG. 11. Spatial coherence in the vertical direction with verti
divergence.
n
in.

ur
ri-

n
pe,

although the divergence distribution of the electron beam
Gaussian. This comes from the third-order contribution
the phase. Actually, these curves are fitted exactly with
curves expected analytically in Eq.~60!, which is

ugs,s~Q1 ,Q2 ;v!u5
1

A4

11S kr0D«xb̄x

L3 D 2 , ~93!

where«xb̄x5L2sx8
2 in this case.

2. Vertical divergencẽ vertical coherence

We use the parameters

Q15S 0,
D

2
,L D , Q25S 0,2

D

2
,L D , sx850,sy8Þ0.

The results of numerical calculations are shown in Fig.
The coherence decreases more rapidly than that of the
case~horizontal divergence→ horizontal coherence!. More-
over, the curves are similar to the Gaussian shape.

According to Eq.~75!, the coherent size is given by

ugs,s~Q1 ,Q2 ;v!u5expS 2
«yb̄yD

2

8s̄p
2~ s̄p

21«yb̄y!
D

5expS 2
D2

8sc
2D , ~94!

where

sc5As̄p
2~ s̄p

21«yb̄y!

«yb̄y

. ~95!

In this case, we can put«yb̄y5L2sy8
2 andsp851.79 mrad.

As shown in Table III, we compare this with the cohere
size calculated numerically, which is obtained by fitting t
curves in Fig. 11 by Eq.~94!. A large discrepancy is found
especially for the large coherent size, which comes from
fact that the bending magnet radiation is not exactly
Gaussian beam. Therefore, the Gaussian approximatio
not perfect for calculating coherence and in order to confi
precisely whether the van Cittert–Zernike theorem can
used in the vertical direction, numerical calculation for ea
specific case is necessary.

-

l

TABLE III. Comparison of the coherent size for a larg
electron-beam divergence in the vertical direction. The cohe
size expected by Eq.~95! and the numerical calculation are com
pared.

Electron-beam
divergence Analytical calculation Numerical calculatio

~mrad! ~mm! ~mm!

0.5 66.6 31.2
1 36.7 23.0
2 24.0 18.1
5 19.8 15.2
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3. Horizontal divergencẽ vertical coherence

We use the parameters

Q15S 0,
D

2
,L D , Q25S 0,2

D

2
,L D , sx8Þ0,sy850.

The results of numerical calculations are shown in F
12. The coherence is always unity in this case, as expe
from Eq. ~75!, because there is no phase difference betw
two observer points at all. Moreover, the intensities at t
points are always the same. Therefore, the horizontal di
gence of the electron beam does not affect the vertical
herence at all.

4. Vertical divergencẽ horizontal coherence

We use the parameters

Q15S D

2
,0,L D , Q25S 2

D

2
,0,L D , sx850,sy8Þ0.

According to Eq.~60!, the expected curve is

ugs,s~Q1 ,Q2 ;v!u5!4

S 11
«yb̄y

s̄p
2 D 2

S 11
«yb̄y

s̄p
2 D 2

1S kr0D«yb̄y

L3 D 2 ,

~96!

where «yb̄y5L2sy8
2 in this case. The results of numeric

calculations and the analytically expected curves in Eq.~96!
are shown in Fig. 13. We can see that Eq.~96! is not a
complete approximation to describe the coherence. T
shows that the Gaussian approximation is a poor approxi
tion with which to calculate the coherence again.

V. SUMMARY

We calculated the spatial coherence of the bending m
net radiation while assuming that the radiation is represen
with the phaseF and the wave formG. The result was
compared with a numerical calculation.

FIG. 12. Spatial coherence in the vertical direction with ho
zontal divergence.
.
ed
n
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o-
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We showed that the van Cittert–Zernike theorem can
applied in the horizontal and vertical directions if th
electron-beam size is much larger than a certain valuese so
that the electron-beam size can be estimated by measu
the spatial coherence. On the other hand, if the electr
beam size is much smaller thanse, the electron-beam diver
gence can be estimated by measuring the spatial cohere
The conditions under which the van Cittert–Zernike theor
is valid are written in Eqs.~67!, ~68!, and~69! for the hori-
zontal direction and in Eqs.~79!, ~80!, and~81! for the ver-
tical direction. If the vertical divergence of the electron bea
is small,se in the horizontal direction is fully determined b
the bending radius and the electron-beam parameters. Fo
vertical direction,se depends heavily on the wavelength
light as well as on the bending radius and the electron-be
parameters. It is complicated to justify the applicability
the van Cittert–Zernike theorem in the vertical direction.
that sense, an estimation of the vertical size is more diffic
than that of the horizontal size. However, we can eas
eliminate this difficulty by introducing a vertical bendin
magnet and exchanging the characteristics of measurem
in the horizontal direction and the vertical direction. A seri
of numerical calculations based on the first principles w
carried out for some specific cases to make the argum
clear.

We emphasize some advantages of the SR interferom
in measuring the emittance compared to other optical m
ods, such as via the x-ray pinhole camera@13–15#. We can
measure the electron-beam size by the degree to which
SR interferometer is affected by the field depth and the
fraction. These effects are already included in the princi
of the measurement as explained in this paper. Also, we
choose any wavelength for the measurement, especiall
the horizontal direction, so long as the interference patt
can be measured, although the visible light has some tec
cal advantages in treating the optical system and dete
easily. The accuracy of the measurement of emittance is
ited only by the errors of the optical system, such as
deformation and blot of the mirror, and the resolution of t
charge-coupled device camera to measure the interfer
pattern.

FIG. 13. Spatial coherence in the horizontal direction with v
tical divergence. ‘‘num’’ and ‘‘ana’’ represent the numerical calc
lation and the analytical calculation, respectively.
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